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ABSTRACT Q ’)> qq -

A cantilevered, continuous pipe conveying fluid at a constant velocity
is studied analytically. It is shown that sufficiently small velocity-
dependent forces, such as internal and external damping, as well as
Coriolis forces, may have a destabilizing effect. It is also demonstrated
that the Galerkin method with a two-term approximation may lead to erroneous

results when velocity-dependent forces exist in the system.



1. Introduction

Some technological demands of recent years have brought into focus the
importance of stability investigations of elastic systems subjected to non-
conservative forces, i.e. forces which do not possess a potential. Missiles,
aircraft and various elements of high-performance launch vehicles may give
rise to this type of problems. For example, a flexible missile under end
thrust must be investigated for possible overall flutter-type instability.
In this case one may idealize the system by a free-free, slender beam,
subjected at one end to a follower force, and determine the critical thrust.

One of the principal .features of these problems is that the static
approach is usually inadequate for stability analysis, and a dynamic
stability criterion must be emploved, i.e. the actual motion of these
systems must be studied [1,2,3,4,5,6]*.

In 1952 Ziegler [7], by means of an example, indicated that linear
viscous damping forces in a noncomnservative elastic system with two degrees
of freedom may have a destabilizing effect, This remarkable discovery
provided an impetus for further studies, and subsequently several investiga-
tors [4,8,9,10,11] explored this phenomenon in more detail. For example,
Nemat-Nasser and Herrmann [11] have proved that the critical flutter lcad of
an undamped {no velocity-dependent forces exist) nonconservative, discrete,
linear system is an upper bound for the critical flutter locad of the same
system when sufficiently émall velocity-deﬁendent forces are also present.
Therefore, it was concluded that in a general nonconservative system with

N degrees of freedom not only slight viscous damping but all sufficiently

*
Numbers in brackets refer to the Bibliography at the end of this paper.



small velocity-dependent forces, such as Coriolis forces on vibrating pipes
conveying fluid, or other gyroscopic forces, may have a destabilizing
effect.

For a continuous system, however, which possesses an infinite number
of degrees of freedom, no such theorems are as yet established. To study
the effect of viscous damping forces in such systems most investigators, in
general, reduce first the continuous system to a discrete one by means of,
for example, the Galerkin method, and then study the reduced, discrete
system [4,12,13]. But, as was shown in [11], a discrete system does, in
fact, always have this property, except in very particular cases. There-
fore, by this approach one does not know whether the original continuous
system also exhibits the same behavior or whether it is pro&uced only
through the reduction procedure.

The purpose of the present study is to show that the presence of
sufficiently small velocity-dependent forces inm a continuous elastic
system subjected to follower forces does, indeed, have a destabilizing
effect. To this end, a cantilevered, continuous pipe conveying fiuid at a
constant velocity is considered. The internal and external viscous damping
forces are also included, and then it is proved that the critical flutter
load of the system may be reduced by almost 50% for some combinations of
these velocity~dependent forces.

Although the problem of a cantilevered viscoelastic pipe conveying
fluid has numerous practical applications, in the present study it is also
used as a model to demonstrate the remarkable phenomenon of destabilizing
effect of sufficiently small velocity-dependent forces in a nonconservative,

continuous system without reducing the system to a discrete one. (The



destabilizing effect of Coriolis forces in torsional flutter of a
cantilevered continuous bar was first discussed by Nemat-Nasser and
Herrmann in [14].) Moreover, the method of analysis, which effectively
reduces a complicated non-self-adjoint boundary value problem to a simple
frequency analysis by utilizing fully the fact that the velocity-dependent
forces are sufficiently small, is itself of some value and may be employed
for the stability analysis of ome-, two-, or three-dimensional continuous
nonconservative systems,

In the final portion of this work, we shall use the opportunity to
test the accuracy of the widely used Galerkin method with a two-term
approximation. It is to be noted that no such analysis of this approximate
method, for the case when the equations of motion of the system also contain
mixed time and space derivatives, has as yet been carried out. Therefore,
there exists no a priori certainty that the method of Galerkin, especially
with a two-term approximation, should necessarily yield sufficiently
accurate results, particularly when the effect of Coriolis forces, in the
reduced discrete system, has to be included through a nonsymmetric matrix.

In the present study, critical flutter loads of the system, for small
velocity-dependent forces, and also for large values of Coriolis forces,
are obtained by using the Galerkin method with a two-term approximation,
The results are then compared with the exact solution. It is then shown
that the two-term approximation yields sufficiently accurate values for the
critical flutter load only if the velocity-dependent forces are small. )

That is, for large values of Coriolis forces the critical load obtained by

the Galerkin method with a two-term approximation may be greatly in error.



2. Statement of the Problem

We consider a cantilevered, uniform pipe of length L and internal
cross-sectional area A, conveying fluid at a constant velocity U. A nozzle
whose opening is n times smaller than A is placed at the free end of the
system, as is shown in Figure 1.

We shall assume that the material of the pipe obeys a stress-strain
relationship of the Kelvin type, i.e.

o = Ee + e (1)
where E is the modulus of elasticity and T} is the coefficient of viscosity.
Under the assumption of plane sections remaining plane, the moment-curvature

relationship, for small deformations, is

M ?
05 2

where M is the resultant moment at section x and at time t, I the moment of
inertia, and y the transverse deflection of the pipe. With u denoting the
displacement in the x direction, and z the distance of each fiber from the
neutral axis, we also have

o =¥z € = Qu u= -2z oy (3)

ox °
The equation of motion may now be stated as

g%‘-‘-p (4)

where p is the resultant lateral force exerted on the pipe. This lateral
force may be decomposed into three parts. The first part is due to the

. . s [oid .

inertia forces and is given by +(m + m, ) iz; , where m is the mass of the

pipe per unit of length, and m, the mass of the fluid contained within the



pipe. The second part is due to Coriolis acceleration and is given by
+2m&U %;%— , and finally, the third part, which is due to equivalent
compressive force induced by the flux of momentum out of the pipe, and is

2
given by +1502n %;% . Therefore, the equation of motion, (4), becomes

2 o2 2 Loxs '
%{g-=(m+m1)ﬁg+2m1U&§t+m1U2n#, (3)
and substitution from (1), (2), and (3) into (5) finally yields

3ty By 2 Bzz - -
EI A + NI SESC +-n5U2n 5;5 + 2m U Py + (m +m) SE} 0.

If we include also the effect of external damping in the form K 2 where

t ?

K is a constant, and introduce the following dimensionless quantities:

_ X (m + m )L* m,
$=1» 7T EL » m+m

ﬂ=F2 J_.f]%_=6' . _‘S.a_l':_gy'
EI ’ E(m + m, )L* ’ v EX(m +m) ?

then we obtain

=B',

_aiz Py aaj }g Bzz léz 32 =
StV s P st Pt Y srsE 0. (©

To study the effect of small viscous damping forces and Coriolis

forces, we now let

4
§' = vs , Y’ =2y, and A/;L=\)B,

where vy is a small parameter. The equation of motion, (6), and the boundary

conditions at € = 0, 1, may then be written as

Py, e By, P ¥y Py L.
a§4+F2§§§+-a—T§+v[6B$BT+23FB§BT+ZVBT] 0,

s
y = S% =0 ; at E=0,



Bzg 33
= = * t = .
In the sequel, we shall study the stability of system (7) when v is

sufficiently small.



3. Stability Analysis

We let y = ¢(§)euDT ; 1=,/ -1 , and reduce (7) to the following

boundary value problem

®y _ : d*y dy -
Faaég- u)2¢+1wv[6-d—gz-+28FE§—+2Vt] o,

|2
+

$=¢%'=0; at E=0,
' =4"=0;at E=1, (8)

where prime denotes differentiation with respect to €.
LMz . .
We then set § = e ; A =X + iva , and obtain

(A + iva)* + FP(\ + iva)®- «® + iyw [6(A + iva)* +

+ 28F(\ + iva) + 2y] =0 , (9)
which is the characteristic equation of system (8). Expanding (9) in a

series of powers of v, we are led to

{a + - o} + (iv) {4a)® + 22a + w(e)* + 288N + 20} +
+ (i\,)a{eaz)ﬁ + FPa® + w(4sa)® + 25Fa)} + (i\,')a{l&)«.aa + 66wa2)\2} +
4

+ (iv)4{a“ + Awaax} + (iv)®(wat) =0 .

Next, we equate terms of like powers in v, neglecting O(v®) and

higher, and finally arrive at

)\2=-%ii J(%e;)2+uﬁ ,

5A* + 28F) + 2y |
Q(2° + ¢y °

A=A+ iva . (10)
. 4 _
The solution to system (8) may now be written as §(g) = E:Ajeljg , where
. j=1

.



Aj s 3 =1,2,3,4, are constants which can be obtained from the boundary
conditions at € = 0,1. That is, they must satisfy the following four

linear, homogeneous equations:

4
ZA3=0,
=1

4
ZijAj =0,
3=1

4 -
YAt -0,

J 1
=
4 -

Ta )\j _ 1
) A2t -0 (11)
i=

System (11) has non-trivial solutions if and only if the determinant

of the coefficients is identically zero, i,e. the frequency equation is
b= ,7557 Gy R) G- %) et Ta)
F 12T Gan K G- Ty et o)
FRPR2 (- 1), 1y) eBat M)y
+ 5,202 G- Ry (g Rp) oot M) 4
A2 Gy T) (- B eBat My

T ICTC WA S U E WLE S YO R (12)

This expression may be reWritten with the aid of (10) as follows,

after expanding it in terms of powers of vy, and neglecting 0(v3),




A= {F‘+ 20°+ 2uf ch A, cos Mgt Fw sh ), sin ks} -

i __ZgE@is 4 3 2 .
"1\’{< ){0\" )+ (0°- 3 ) ¢h ), sin +
2\, °+ 17 M hs 1 M 1 Ay
+ (30 Ng°~ A7) sh ) cos )y 7, (0,2t ) s 1
+ 60,223 ch ), cos Ag- 40302 sh )y sin Mg+ 240 sh Ay sin ), +
+ 20,20, sh A, cos Mg+ A, 2% ch A, sin M- W*2g2 ch )y sin Xa] +

brgt+ 2y
+< 2)\3(2)\1=+ F) ) [()‘15"' Shgt) + 63,3242 ch A, cos Ay +

+ 43,222 sh A sin - 25*)y sh )\, sin )g- 2,33,% ch ), sin )y +
+ 3,20 sh ) cos Ag- A *2,® sh ), cos as] } =0, (13)

were 2,7 =T J(EY «@ L =R [(F) +o

The first term in braces, in equation (13), is the frequency equation

when v = 0, and the second term, to the first order of approximation in v,
indicates the effect of small viscous damping forces and Coriolis forces.
For v = 0, we obtain the frequency equation of a purely elastic cantilevered
beam subjected to a compressive force which stays tangent to the axis at the
free end [1,4]. The critical value of the load, in this case, is
Fez = 20.05, which was first computed by Beck [1].

For non-zero but sufficiently small values of v and for small F, all
the roots of equation (13) are located to the left of the imaginary axis in

the complex iw plane. As we increase F, at least one of these roots
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approaches the imaginary axis, and for a certain value of F, say Fd R
equation (13) yields one purely imaginary root iw = iwc. If we now
increase F beyond this critical value Fd , one ofvthe roots of (13)

becomes complex with negative imaginary part, and the system oscillates
with an exponentially increasing amplitude. Therefore, for given values

of §, B and Y, we shall seek critical values of w = w_ (real), and F = Fd
which identically satisfy (13). This is illustrated in Figure 2 where,

for § =1, B=1, and v = 0, real (A,) and imaginary (-A;) parts of A

are plotted against the values of w?. Similar results may be obtained

for other values of §, B8, and v.

It may also be of interest to establish the destabilizing effect of
Coriolis forces, internal viscous damping forces, and externmal viscous
damping forces independently. e 3

To this end, we let § =y =0, B =1, and with Yq = ;g— obtain, from
equation (13), Yq = 1.78. Similarly, for B =y =0 and § =1, the critical
load is obtained to be Yd = 1.107. However, for g = § = 0 and vy = 1 we get
Yq = 2.035, which is equal to the critical load of the system when no
velocity-dependent forces are present. That is, although sufficiently
small Coriolis forces and internal viscous damping forces have a
destabilizing effect in this continuous system, external viscous d;mping
forces do not have the same effect.

The combined effect of velocity-dependent forces on the value of the

FB
critical parameter Yg = ;g— is shown in Figures 3 and 4. In these figures
the parameter Y4 is plotted against B/8 for various values of y. The
horizontal dashed line in these figures represents the critical value of

Y4 when no velocity-dependent forces exist and the cantilevered colummn is
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subjected to a compressive follower force at the free end [1].

It is important to note that thg stability curves shown in Figures 3
and 4 have a finite discontinuity at y = 0. That is, altho;gh for v =0
we have F2 = Fe2 = 20.05, for v = 0+, the critical value of. . F2 is, in
general, less than 20.05.

It may also be of interest to explore the order of magnitude of v
for which the destabilizing effect of velocity-dependent forces still
exists. This may be accomplished by considering v large and seeking
values of w and F for which equation (12) is identically satisfied. We
note that, in equation (12), ij ; 1 =1,2,3,4, are defined as functions
of w and the other parameters of the system through equation (9). In
order to circumvent the difficulty of solving polynomials with complex
coefficients, we let § = y = 0 and put A= in in equations (9) and (12).

- The critical values of w and F may now be evaluated employing
computers, The computer may be instructed to obtain the roots of

*
equation (9) for given parameters, and then calculate A, (equation (12)).
F2

These results are shown in Figure 5, where Vg4 = —%— is plotted against
o
[
values of %— , by a solid line. The dashed line in this figure
corresponds to the critical Vd when the Galerkin method with a two-term

approximation is employed for the analysis. We shall discuss this in the

following section.

*
In reference [15] this problem is solved using an indirect method.
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4. Approximate Method of Galerkin

We now employ the Galerkin method [4] for the analysis of system
(7). To this end, we consider a set of orthonormal [16] eigenfunctions,

{cpn(g)} , obtained by solving the following eigenvalue problem

EET"EFE'O‘ at £ =1. (14)

We then let y = an('r) cpn(g), substitute it into the first equation in

n={ .

(7), multiply both sides of this equatiom by by = chm(g) qu('r) , and

m=1

integrate the result from zero to 1 with respect to € to obtain

dgq ®
n 2

) @28, +Fb o dq ¢

m=q

-]

+v2(6mm26mn+25am+2y5mn)qm=0 , M =1,2,...,0, (15)
m
where

Py = cosh A E - cos x;g - oz.g;(sinh )\mg - sin )\ng) >
sinh Ap - sin A
m cosh )\m + cos "iﬁé ’

%mn " ng—(pndg’
5 0
A= w

m m?
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Pm =) I Pa %
4]
1 1 ; form=n
bon =) PP € =
o 0 mon 0; form# n . (16)

System (15) is a set of non-self-adjoint, linear, second order,
homogeneous, ordinary differential equations which admit solutions of the
form 9, = Amein. To obtain the critical values of F°, we seek conditions
under which @ becomes complex with negative imaginary part. System (15),
however, consists of infinite number of equations each with infinite
number of terms. This, therefore, leads to a determinant which possesses
an infinite number of rows and columms.

In practice, it is quite common to let m,n = 1,2 in equations (15)
and reduce this system to only two linear, homogeneous differential
equations [4]. Hence, the characteristic equation becomes a polynomial
of degree four, which can easily be solved. The values of F®, which
renders at least one real root and all the other roots complex with
positive imaginary parts, are then taken to be approximation to the
critical flutter loads.

In the present case, using the above approximation, we obtain the

approximate characteristic equation as
wh- iy {2FB(a11+ aga) + (8 (wy 2+ m®) + le} w® - {[(u)13+ w,?) +
+ v (6w, %+ 2y) w2+ 2v)] + Pv®[2pag, (6w, 2+ 2y) +

+ 282y, (8w,®+ 2y)] + FP[(by,+ byg) + V2 (48%a, 2y, 4eaa13821)]} W
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+ iy {[mf (5u®+ 2v) + wy® (6w, 2+ 2y)] + F[zsu;laaz'a+ 2pw,2a,, ] +
+ F2[b,, (6w, + 2y) + byy (80,%+ 2v)] + F@[(zaazabn# 2Ba,, by ) -

- 28(a,5by, + az1b12)]} w + {F4[b11bza' by byl +

+ FPlw, 2 byp+ w,2b,, ] + wiaubz} =0, 17)
where
a,, =1.99999 ; a,, = 0.759489 ; a5, = -4.75939 ; a5, = 1.99989
b,, = 0.858243 ; by, = 1.87386 ; by, = -11.7429 ; by, = -13.2945

w? = 12.3624 ; wy?

485.519 ;

For sufficiently small values of v, we may neglect terms associated
with y® in equation (17), and using Routh-Hurwitz criteria [17], calculate
approximate values of the critical load F2 = Y4 2, 1In Table I these
approximate flutter loads are compared with the exact values obtained in
the previous section. From this table we observe that, for sufficiently
small v, the Galerkin method with a two-term approximation yields very
accurate results. We note also that, for y = 0, this approximate method
gives F2 = 20.15 as compared with the exact critical load, F° = 20.05.

The above conclusion, however, does not imply tha%, for v finite, the
approximate method should necessarily give sufficiently accurate results.
In fact, as is shown in Figure 5, for § =y = 0, the critical flutter load
obtained by the approximate method (dashed line in Figure 5) can be
greatly in error for relatively large values of the Coriolis forces. We
note that, for V,%gz— smaller than 0.25, the resulting error, when the
Galerkin method with a two-term approximation is used, is less than 5% and

decreases as the value of y decreases.
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It may be of interest to determine whether similar discrepancies
may also result for large values of the internal and external damping

forces. This analysis, however, is postponed to a future study.
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Table 1
Yg = F? /v
B Y ]
Galerkin

Exact Method
0.0 1.0 0.0 2.035 2.035
1.0 0.0 0.0 1.780 1.768
0.0 0.0 1.0 1.107 1.082
1.0 0.0 1.0 1.462 1.447
2.5 0.0 1.0 1.73 1.729
5.0 0.0 1.0 1.92 1.924
0.0 1.0 1.0 1.155 1.133
1.0 1.0 1;0 1.483 1.469
2.5 1.0 1.0 1.735 1.738
5.0 1.0 1.0 1.925 1.926
0.0 10.0 1.0 1.426 1.414
1.0 10.0 1.0 1.618 1.611
2.5 10.0 1.0 1.795 1.79
5.0 10.0 1.0 1.935 1.940
0.0 100.0 1.0 1.895 1.902
1.0 100.0 1.0 1.926 1.930
2.5 100.0 1.0 1.960 1.964
5.0 100.0 1.0 1.996 2.000
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